Abstract

Theoretical changes in the distribution of electrical potential near subsurface resistivity anomalies have been studied using two resistivity models. The results suggest that the greatest response from such anomalies can be observed with buried electrodes, and that the resistivity model of a volume between boreholes can be accurately reconstructed by using crosshole data. The distributive properties of crosshole electrical potential data obtained by the pole‐pole array method have also been examined using the calculated partial derivative of the observed apparent resistivity with respect to a small cell within a given volume. The results show that for optimum two‐dimensional (2-D) and three‐dimensional (3-D) target imaging, in‐line data and crossline data should be combined, and an area outside the zone of exploration should be included in the analysis. In this paper, the 2-D and 3-D resistivity images presented are reconstructed from crosshole data by the combination of two inversion algorithms. The first algorithm uses the alpha center method for forward modeling and reconstructs a resistivity model by a nonlinear least‐squares inversion. Alpha centers express a continuously varying resistivity model, and the distribution of the electrical potential from the model can be calculated quickly. An initial general model is determined by the resistivity backprojection technique (RBPT) prior to the first inversion step. The second process uses finite elements and a linear inversion algorithm to improve the resolution of the resistivity model created by the first step. Simple 2-D and 3-D numerical models are discussed to illustrate the inversion method used in processing. Data from several field studies are also presented to demonstrate the capabilities of using crosshole resistivity exploration techniques. The numerical experiments show that by using the combined reconstruction algorithm, thin conductive layers can be imaged with good resolution for 2-D and 3-D cases. The integration of finite‐element computations is shown to improve the image obtained by the alpha center inversion process for 3-D applications. The first field test uses horizontal galleries to evaluate complex 2-D features of a zinc mine. The second field test illustrates the use of three boreholes at a dam site to investigate base rock features and define the distribution of an altered zone in three dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call