Abstract
In this paper, we present an algebraic, graph theoretic and data-based image inpainting algorithm. The algorithm is applied to reconstruct area or volume from one-dimensional and two-dimensional slice data. Given one-dimensional or two-dimensional slice data, our algorithm first performs a simple algebraic presmoothing of the data, e.g., Gaussian filters. The second step is to obtain, from these smoothed data, an operator that reconstructs them via Dynamic Mode Decomposition. Dynamic Mode Decomposition is an equation-free modeler, which is designed to construct the discrete dynamical operator considering slice data as a time series data. We interpret the DMD as a solution to the inverse problem and apply an appropriate continuous extension of DMD to fill the missing time series data. The last step is to smooth the outcome from the second step using a Constraint Bilateral Smoother. The Constraint Bilateral Smoother is designed to smooth the boundary of area or volume, respecting the given slice data. We demonstrate the performance of the proposed algorithm, in several test cases, which include an Magnetic Resonance Imaging of a two-year-old and a Computed Tomography scan of a Covid-19 patient. We also show that a couple of test results are better than those from some competitive alternative techniques up to 50%. Our tests also show that the inpainting computation time increases linearly as a function of the number of pixels or voxels with slope just around 0.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.