Abstract

This paper presents a 2-D analytical method in the complex domain for the computation of magnetic field distribution, eddy currents, circuit model parameters, and steady-state performances in solid rotor induction motors. The proposed static analytical model considers stator slotting with tooth-tips. The rotor motion is simulated by varying the slip. The analytical magnetic field distribution is computed in polar coordinates from 2-D subdomain method (i.e., based on the formal resolution of Maxwell's equations applied in subdomain) in each region, i.e., semiclosed stator slots, air gap, solid rotor, and shaft. The electromagnetic torque is obtained from both the electrical equivalent circuit and Maxwell stress tensor that is given by the magnetic field distribution. Analytical results are validated by the static finite-element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.