Abstract

A boundary element method (BEM) approach for the solution of the elastic problem with geometrical non-linearities is proposed. The geometrical non-linearities that are considered are both finite strains and large displacements. Material non-linearities are not considered in this paper, so the constitutive law employed is Hooke's elastic one and the fundamental solution introduced in the integral equations is the usual one for isotropic linear elasticity. In order to deal with the intricate non-linear equations that govern the problem, an incremental–iterative method is proposed. The equations are linearized and a Total Lagrangian Formulation is adopted. The integral equations of the BEM are developed in an incremental form. The iterative process is necessary in order to achieve a good approximation to the governing equations. The problem of a slab under homogeneous deformation is solved and the results obtained agree with the analytical solution. The problem of a hollow cylinder under internal pressure is also solved and its solution compared with that obtained by a standardized finite element method code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.