Abstract

In recent years, hydrogen has gained attention as a potential solution to replace fossil fuels, thus reducing greenhouse gas emissions. The development of ever improving hydrogen sensors is a topic that is constantly under study due to concerns about the inherent risk of leaks of this gas and potential explosions. In this work, a new, long-term, stable phosphorene-based sensor was developed for hydrogen detection. A simple functionalization of phosphorene using urea was employed to synthesize an air-stable material, subsequently used to prepare films for gas sensing applications, via the drop casting method. The material was deeply characterized by different techniques (scanning electron microscopy, X-ray diffraction, X-ray photoelectron, and Raman spectroscopy), and the stability of the material in a noninert atmosphere was evaluated. The phosphorene-based sensor exhibited high sensitivity (up to 700 ppm) and selectivity toward hydrogen at room temperature, as well as long-term stability over five months under ambient conditions. To gain further insight into the gas sensing mechanism over the surface, we employed a dedicated apparatus, namely operando diffuse reflectance infrared Fourier transform, by exposing the chemoresistive sensor to hydrogen gas under dry air conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.