Abstract

A 2D colorimetric DNA sensor is reported based on the 2D aggregation of oligonucleotide-modified gold nanoparticle probes resulting from the molecular hybridization between these latest and their complementary single stranded DNA targets. To increase their mobility the nanoparticles are adsorbed on a fluid lipid bilayer, itself supported on a substrate. The hybridization between the target and the mobile nanoparticle probes creates links between the nanoparticles resulting in the formation of nanoparticle aggregates in the plane of the substrate. This aggregation is detected using a new method based on the selective desorption of non-aggregated nanoparticles. The addition of dextran sulfate induces the substitution of non-aggregated gold nanoparticles while aggregated ones are stable on the substrate. We show that this detection method is highly specific and allows the detection of DNA mismatches and damages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.