Abstract
SUMMARY The Laplace-domain full waveform inversion method can build a macroscale subsurface velocity model that can be used as an accurate initial model for a conventional full waveform inversion. The acoustic Laplace-domain inversion produced is promising for marine field data examples. Although applying an acoustic inversion method to the field data generally requires several pre-processing steps, pre-processing for the Laplace-domain inversion has not been explained in detail. We provide a detailed explanation of how to apply the Laplace-domain waveform inversion to field data through numerical tests with Gulf of Mexico data sets. The pre-processing includes bandpass filtering, muting of the noise before the first arrival, and extraction of the water depth. We choose the range and the interval between the Laplace damping constants empirically by applying a threshold value to the damped time traces and the Laplace-domain wavefields. The observed data are transformed to the Laplace domain using the selected damping; this method yielded a long-wavelength inversion result. The damping constant and the maximum offset affect the penetration depth of the inversion result. The maximum recording time is important for a stable Laplace-transformation and affects the inversion result; however, the latter effect is not significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.