Abstract

Polymer derived silicon oxycarbide ceramics (SiOC-PDCs) with widely different carbon contents have been synthesized, and their structures have been studied at different length scales using high-resolution 13C and 29Si magic-angle-spinning (MAS) NMR spectroscopic techniques. The data suggest that the structure of these PDCs consists of a continuous mass fractal backbone of corner-shared SiCxO4-x tetrahedral units with “voids” occupied by sp2-hybridized graphitic carbon. The oxygen-rich SiCxO4-x units are located at the interior of this backbone with a mass fractal dimension of ∼2.5 while the carbon-rich units display a slightly lower dimensionality and occupy the interface between the backbone and the free carbon nanodomains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.