Abstract

Ultra-High Performance Concrete (UHPC) that contains pyrogenic oxides (Pox) and has been heat-cured with microwave energy reaches as high as 420 MPa after 1 day. The influence of microwave curing on the strength gain is much more pronounced in UHPC than in normal concrete. 29Si and 27Al MAS NMR nanomolecular structure investigation of Ultra-High-Performance Concrete (UHPC) modified with nanoscale pozzolans (pyrogenic oxides) reveals significant differences from other concrete types that may explain such high early strength. There is an increase in polymerization degree of C-(A) S–H (C–S–H containing Al) phase of the UHPC modified with pyrogenic oxides, followed by a trend of substitution of silicon atoms on the Q₃ sites of C–S–H (calcium-silicate-hydrates) through aluminum atoms. The mean chain length (MCL) and degree of connectivity (Dc) are the highest for pyrogenic oxides containing UHPC that have been cured with microwave energy. The increase of polymerization degree is more pronounced for alumina-based pyrogenic oxide containing UHPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.