Abstract

OBJECTIVES/GOALS: Microtubule poisons, like Taxol, are used to treat triple negative breast cancer (TNBC) and may induce lethal aneuploidy in cancer cells. Patients initially respond, but often develop drug resistance. New targeted drugs that cause aneuploidy may be a valuable approach to therapy. One potential target is the Kinesin 13 MCAK, which limits aneuploidy. METHODS/STUDY POPULATION: TCGA and GSE47561 databases were probed for MCAK expression, and data was stratified by subtype and survival statistics. Knockdown studies were performed to test whether MCAK knockdown sensitizes cells to taxanes for cell proliferation and for induction of aneuploidy. FRET and image-based screens were used to identify MCAK inhibitors from small molecule inhibitor libraries. Inhibitors were then tested for functional effects in multiple cell-based assays and for clonal growth in colony formation assays. RESULTS/ANTICIPATED RESULTS: MCAK expression is upregulated in TNBC and associated with reduced overall survival. Knockdown of MCAK caused a two-to-five-fold reduction of the IC50 for Taxol in cancer cell lines, with no change in normal cell lines. Taxol treatment or MCAK knockdown increased aneuploidy induction, with no additive effect between the two. Our small molecule screen identified three putative MCAK inhibitors, which induced aneuploidy in both taxane-sensitive and taxane-resistant cells. These inhibitors also reduced clonogenic growth, and the most potent inhibitor, C4, caused an approximate five-fold reduction in the IC50 for Taxol in cell proliferation assays. DISCUSSION/SIGNIFICANCE: MCAK can serve as a biomarker of breast cancer prognosis. MCAK knockdown or inhibition sensitizes cancer cells to Taxol without affecting normal cells, making it a potential target in combination therapy. MCAK inhibitors also reduce growth as single agents in taxane resistant lines, giving them potential use as therapies in resistant disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.