Abstract
Modern computing technology is based on silicon. To date, a cost-effective and easy to implement method to obtain isotopically pure silicon is highly desirable for attaining efficient heat dissipation in microelectronic devices and for hosting spin qubits in quantum computing. We propose that it is possible to use a 28Si+ ion beam to obtain an isotopically pure near-surface region in wafer silicon. However, this requires a highly stable, high current, and isotopically pure 28Si ion beam. This work presents and discusses the instrumentation details and experimental parameters involved in generating this required ion beam. Silane is used as the precursor gas and is decomposed in a Penning ion source to generate a 28Si+ ion beam. The influence of key ion source parameters such as the gas flow rate, magnetic field strength, and anode voltage is presented. An isotopically pure 28Si+ ion beam with 10 ± 0.5 μA current on the target is obtained at the GNS Science 40 kV ion implanter. The beam was observed to be stable for at least 8 h and contains less than 700 ppm of other Si isotopes. This high current and high purity provides opportunities to explore efficient modification of the isotopic distribution in a native Si substrate at ambient temperature. The results highlight opportunities offered by using Penning ion source based low energy ion implanters for the synthesis of isotopically modified Si surface regions-a technique also applicable to other materials such as diamonds and diamond-like carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.