Abstract

Bio-impedance (BioZ) is an important physiological parameter in wearable healthcare sensing. Besides the inherent cardiac and respiratory information, BioZ can be also used for other emerging applications such as non-invasive blood status sensing [1]. A conventiona14-e1ectrode (4E) setup eliminates the effect of electrode-tissue impedance (ETI) at the expense of user comfort, system complexity, and cost. On the other hand, a 2-electrode (2E) setup avoids short-falls of 4E but can only capture relative changes of Bi0Z instead of its absolute value. In addition, a readout front-end (RFE) with wide dynamic range (DR) and high signal-to-noise ratio (SNR) is needed to deal with small BioZ variation (0.1$\sim10\Omega$) as well as large baseline resistance (>10k$\Omega$). A conventional RFE architecture employing an instrumentation amplifier (IA) and ADC has to trade-off between resolution, DR and noise [2, 3]. Although flicker noise in the current generator (CG) is mitigated through dynamic element matching (DEM) [2], the reference current (IREF) noise issue remains unaddressed. In [5], digital-assisted baseline cancellation and IREF correlated noise cancellation are proposed, which help eliminate IREF noise and input-dependent noise [4] due to the large signal in the current-balance instrumentation amplifier (CBIA). Nevertheless, larger noise is still observed due to the finite residual current $(I_{res})$ from the baseline cancellation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.