Abstract
AbstractMultijunction/tandem solar cells have naturally attracted great attention because they are not subject to the Shockley–Queisser limit. Perovskite solar cells are ideal candidates for the top cell in multijunction/tandem devices due to the high power conversion efficiency (PCE) and relatively low voltage loss. Herein, sandwiched gold nanomesh between MoO3 layers is designed as a transparent electrode. The large surface tension of MoO3 effectively improves wettability for gold, resulting in Frank–van der Merwe growth to produce an ultrathin gold nanomesh layer, which guarantees not only excellent conductivity but also great optical transparency, which is particularly important for a multijunction/tandem solar cell. The top MoO3 layer reduces the reflection at the gold layer to further increase light transmission. As a result, the semitransparent perovskite cell shows an 18.3% efficiency, the highest reported for this type of device. When the semitransparent perovskite device is mechanically stacked with a heterojunction silicon solar cell of 23.3% PCE, it yields a combined efficiency of 27.0%, higher than those of both the sub‐cells. This breakthrough in elevating the efficiency of semitransparent and multijunction/tandem devices can help to break the Shockley–Queisser limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.