Abstract

2,7-Dibromocarbazole (2,7-DBCZ) is one of the most frequently detected polyhalogenated carbazoles (PHCZs) in the environmental media. 2,7-DBCZ has attracted public attention for its potential for dioxin-like toxicity and cardiovascular toxicity. However, researches on the potential mechanism of angiogenesis inhibition by 2,7-DBCZ is still insufficient. Herein, human umbilical vein endothelial cells (HUVECs) were applied to explore the angiogenic effect of 2,7-DBCZ and the potential underlying mechanisms. 2,7-DBCZ significantly inhibited tube formation in HUVECs in the non-toxic concentration range. PCR array showed that 2,7-DBCZ reduced the expression proportion between VEGFs and Ang2, thereby inhibiting tube formation in HUVECs. Then, small RNA interference and DNA methylation assays were adopted to explore the potential mechanisms. It has been found that angiopoietin2 (Ang2)-silencing recovered the tube formation inhibited by 2,7-DBCZ. The DNA methylation status of Ang2 promoter also showed a demethylation tendency after exposure. In conclusion, 2,7-DBCZ could demethylate the Ang2 promoter to potentiate Ang2 expression, thus altering angiogenic phenotype of HUVECs by reducing the proportion between Ang2 and VEGFs. The data presented here can help to guide safety measures on the use of dioxin-like PHCZs for their potential adverse effects and provide a method for identifying the relevant biomarkers to assess their cardiovascular toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call