Abstract

A large-mode-area (LMA) ytterbium-doped photonic crystal fiber (PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F−/P5+ co-doped silica glass containing 0.09 mol% Yb2O3 with an absorption coefficient at 976 nm up to 3.2 dB/m. The core glass with homogeneous distribution of Yb3+ ions and refractive index difference of 4 × 10−4 compared with pure silica was prepared by the sol-gel method and heat homogenization at 2000°C. Laser power amplification of this LMA PCF was studied using a seed source of 21 ps pulse duration and 48.7 MHz repetition rate at 1030 nm wavelength. With pump power of 520 W, a maximum 272 W (266 kW peak power) quasi-single-mode laser output with M2 of 2.2 was achieved in a 4.7 m fiber length bent at a diameter of 47 cm with slope efficiency of 52%, and no obvious mode instability, stimulated Raman scattering, or thermal damage on the end facet of the fiber were observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.