Abstract

Simple SummaryBreast cancer is the most common cancer in women, and there is a known link between high cholesterol levels and breast cancer. However, how cholesterol impacts breast cancer is poorly understood, particularly in the case of an aggressive form of cancer known as estrogen receptor negative breast cancer. Using cells in culture and models of breast tumors in mice, we have determined that an abundant metabolite of cholesterol known as 27-hydroxycholesterol stimulates estrogen receptor negative breast cancer growth. We have also determined how 27-hydroxycholesterol stimulates the growth, identifying a new mechanism of action of 27-hydroxycholesterol. These new findings may explain the link between high cholesterol and estrogen receptor negative breast cancer, and they may lead to the development of new therapies for a type of breast cancer that presently lacks specific treatments.Cholesterol affects the proliferation of breast cancer (BC) and in particular of estrogen receptor-negative (ER−) BC. Cholesterol is converted to 27-hydroxycholesterol (27HC), which promotes the growth of ER+ BC. Potentially, 27HC can be involved in cholesterol-dependent ER− BC proliferation. Stable MDA-MB-231 silenced clones for CYP7B1 (27HC metabolizing enzyme) show an increased basal proliferation rate, which is not observed in the presence of lipoprotein-deprived serum. Furthermore, the treatment of SKBR3, MDA-MB-231 and MDA-MB-468 with 27HC increased cell proliferation that was prevented by G15, a selective G Protein-Coupled Estrogen Receptor (GPER) inhibitor, suggested this receptor to be a potential 27HC target. Binding experiments demonstrate that 27HC is a new ligand for GPER. We show that ERK1/2 and NFκB are part of the 27HC/GPER pathway. The stable silencing of GPER prevents NFκB activation and reduces basal and 27HC-dependent tumor growth. Additionally, conditioned medium from ER− BC cells treated with 27HC promotes tube formation, which does not occur with CM from GPER silenced cells. Collectively, these data demonstrate that cholesterol conversion into 27HC promotes ER− BC growth and progression, and the expression of GPER is required for its effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.