Abstract

Spatial navigation and event memory (termed episodic memory) are thought to be heavily intertwined, both in terms of their cognitive processes and underlying neural systems. Some theoretical models posit that both memory for places during navigation and episodic memory depend on highly overlapping brain systems. Here, we assessed this relationship by testing navigation in an individual with severe retrograde and anterograde amnesia; the amnesia stemmed from bilateral lesions in the medial temporal lobes from two separate strokes. The individual with amnesia and age-matched controls were tested on their memories for the locations of previously seen objects relative to distal mountain cues in an immersive virtual environment involving free ambulation. All participants were tested from both repeated and novel start locations and when a single distal mountain cue was unknowingly moved to determine if they relied on a single (beacon) cue to a greater extent than the collection of all distal cues. Compared to age-matched controls, the individual with amnesia showed no significant deficits in navigation from either the repeated or novel start points, although both the individual with amnesia and controls performed well above chance at placing objects near their correct locations. The individual with amnesia also relied on a combination of distal cues in a manner comparable to age-matched controls. Despite largely intact memory for locations using distal cues, the individual with amnesia walked longer paths, rotated more, and took longer to complete trials. Our findings suggest that memory for places during navigation and episodic memory may involve partially dissociable brain circuits and that other brain regions outside of the medial temporal lobe partially support some aspects of navigation. At the same time, the fact that the individual with amnesia walked more circuitous paths and had dense amnesia for autobiographic events supports the idea that the hippocampus may be important for binding information as part of a larger role in memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.