Abstract
In this brief, the design of an ultralow power digitally controlled oscillator (DCO) for Bluetooth low-energy applications is proposed. The DCO core is designed to operate in the subthreshold region. The DCO power consumption is reduced mainly by maintaining the constant current over process, voltage, and temperature (PVT) variations in the oscillator core via an adjustable low-dropout (LDO) regulator. The power consumption is also reduced by employing ${g_{m}/I_{D}}$ optimization methodology and by lowering the supply voltage. A very small capacitance of about ${\Delta }\text{C}{\approx }16$ aF through a customized lateral metal-oxide-metal capacitor bank is utilized to attain small switchable capacitance in the fine capacitor bank tuning. The parasitic inductance due to routing is eliminated by using an aluminum metal with a very large width. The proposed design is fabricated with 55-nm CMOS process. The experimental results show that the power consumption of the proposed DCO including both LDO and bandgap voltage reference is $260~{\mu }\text{W}$ with the supply voltage of 0.55 V, and the constant current consumption is $480~{\mu }\text{A}$ over PVT variations. The tuning range of 2.23–2.7 GHz and frequency resolution of 2.44 kHz are achieved. At 1-MHz offset frequency from the carrier frequency of 2.44 GHz, the DCO phase noise and the figure of merit (FOM $_{{T}}$ ) considering the frequency tuning range are −119.05 and 199.12 dBc/Hz, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.