Abstract

We fabricate 2.6 μm InGaAs photodetectors by MBE technology and study its dark current mechanisms. Deep-level transient spectroscopy (DLTS) demonstrates a deep-level trap located at Ec - 0.25 eV in the absorption layer. Using the trap parameters, a dark current model is constructed and the device simulation generates the dark current characteristic which agrees well with the experimental data. The model suggests that the dark current at low reverse voltage is dominated by the Shockley-Read-Hall (SRH) and trap-assisted tunneling (TAT). Furthermore, it predicts some basic rules for suppressing the dark current in 2.6 μm InGaAs detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.