Abstract
256-Mb DRAM circuit technologies characterized by low power and high fabrication yield for file applications are described. The newly proposed and developed circuits are a self-reverse-biasing circuit for word drivers and decoders to suppress the subthreshold current to 3% of the conventional scheme, and a subarray-replacement redundancy technique that doubles chip yield and consequently reduces manufacturing costs. An experimental 256-Mb DRAM has been designed and fabricated by combining the proposed circuit techniques and a 0.25- mu m phase-shift optical lithography, and its basic operations are verified. A 0.72- mu m/sup 2/ double-cylindrical recessed stacked-capacitor (RSTC) cell is used to ensure a storage capacitance of 25 fF/cell. A typical access time under a 2-V power supply voltage was 70 ns. With the proper device characteristics, the simulated performances of the 256-Mb DRAM operating with a 1.5-V power supply voltage are a data-retention current of 53 mu A and an access time of 48 ns.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.