Abstract

In this paper, we demonstrate how the development of parallel hardware architectures for turbo decoding can be continued to achieve a throughput of more than 100 Gb/s. A new, fully pipelined architecture shows better error correcting performance for high code rates than the fully parallel approaches known from the literature. This is demonstrated by comparing both architectures for a frame size K = 128 LTE turbo code and a frame size K = 128 turbo code with parity puncture constrained interleaving. To the best of our knowledge, an investigation of the error correcting performance at high code rates of fully parallel decoders is missing from the literature. Moreover, place & route results for a case study implementation of the new architecture on 28 nm technology show a throughput of 102.4 Gb/s and an area efficiency of 4.34 Gb/s/mm2 making it superior to reported implementations of other parallel decoder hardware architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.