Abstract
The shape of the large ice sheets responds rapidly to climate change, making the elevation changes of these ice-covered regions an essential climate variable. Consistent, long time series of these elevation changes are of great scientific value. Here, we present a newly-developed data product of 25 years of elevation changes of the Greenland Ice Sheet, derived from satellite radar altimetry. The data product is made publicly available within the Greenland Ice Sheets project as part of the ESA Climate Change Initiative programme.Analyzing repeated elevation measurements from radar altimetry is widely used for monitoring changes of ice-covered regions. The Greenland Ice Sheet has been mapped by conventional radar altimetry since the launch of ERS-1 in 1991, which was followed by ERS-2, Envisat and currently CryoSat-2. The recently launched Sentinel-3A will provide a continuation of the radar altimetry time series. Since 2010, CryoSat-2 has for the first time measured the changes in the coastal regions of the ice sheet with radar altimetry, with its novel SAR Interferometric (SARIn) mode, which provides improved measurement over regions with steep slopes.Here, we apply a mission-specific combination of cross-over, along-track and plane-fit elevation change algorithms to radar data from the ERS-1, ERS-2, Envisat and CryoSat-2 radar missions, resulting in 25 years of nearly continuous elevation change estimates (1992–2016) of the Greenland Ice Sheet. This analysis has been made possible through the recent reprocessing in the REAPER project, of data from the ERS-1 and ERS-2 radar missions, making them consistent with Envisat data. The 25 years of elevation changes are evaluated as 5-year running means, shifted almost continuously by one year. A clear acceleration in thinning is evident in the 5-year maps of elevation following 2003, while only small elevation changes observed in the maps from the 1990s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.