Abstract

Aberrant oxysterol biosynthesis is implicated in the pathogenesis of neurodegenerative diseases. During the present study we have investigated the effects of exogenously added 25-hydroxycholesterol (25-HC) on transcription of cholesterol biosynthetic genes, sterol-regulatory element binding protein (SREBP) processing and cholesterol biosynthesis in the murine CATH.a neuronal cell line. A single i.p. injection of lipopolysaccharide resulted in robust induction of cholesterol 25-hydroxylase mRNA and protein levels in brains of treated mice. In vitro, 25-HC upregulated the transcription of ATP-binding cassette transporter A1 (ABCA1) and (to a lesser extent) apolipoprotein E (apoE) in CATH.a neurons. Cholesterol biosynthetic gene expression (squalene synthase, HMG-CoA synthase, HMG-CoA reductase, and SREBP2) was downregulated by 25-HC. 25-HC also significantly attenuated proteolytic processing of SREBP2. Finally, 25-HC downregulated cholesterol biosynthesis in CATH.a neurons. Our results demonstrate that 25-HC is a potent effector oxysterol of neuronal cholesterol homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call