Abstract

Ten previously unreported 2,4-diaminothieno[2,3-d]pyrimidine lipophilic dihydrofolate reductase inhibitors were synthesized as potential inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Pivaloylation of 2,4-diamino-5-methylthieno[2,3-d]pyrimidine followed by dibromination with N-bromosuccinimide in the presence of benzoyl peroxide gave 2,4-bis(pivaloylamino)-6-bromo-5-(bromomethyl)thieno[2,3-d]pyrimid ine, which after condensation with substituted anilines or N-methylanilines and deprotection with base yielded 2,4-diamino-6-bromo-5-[(substituted anilino)methyl]thieno[2,3-d]pyrimidines. Removal of the 6-bromo substituent was accomplished with sodium borohydride and palladium chloride. The reaction yields were generally good to excellent. The products were tested as inhibitors of dihydrofolate reductase (DHFR) from P. carinii, T. gondii, and rat liver. Although the IC50 could not be reached for the 6-unsubstituted compounds because of their extremely poor solubility, three of the five 6-bromo derivatives were soluble enough to allow the IC50 to be determined against all three enzymes. 2,4-Diamino-5-[3,5-dichloro-4-(1-pyrrolo)anilino]methyl]- 6-bromothieno[2,3-d]pyrimidine was the most active of the 6-bromo derivatives, with an IC50 of 7.5 microM against P. carinii DHFR, but showed no selectivity for either P. carinii or T. gondii DHFR relative to the enzyme from rat liver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.