Abstract

A hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with an effluent recycle was used for biological treatment of 2,4,6 tri-chlorophenol (TCP) containing synthetic wastewater. The effects of sludge age (solids retention time) on chemical oxygen demand (COD), TCP, and toxicity removal performance of the system were investigated for sludge ages between 5 and 30 days , while the feed COD (2600±100 mg L−1 ) , TCP (370±10 mg L−1 ) , and the hydraulic residence time (25 h) were constant. Percent TCP, COD, and toxicity removals increased with increasing sludge age resulting in nearly complete COD, TCP, and toxicity removal at sludge ages above 20 days . Biomass concentrations in the packed column and in the aeration tank increased with increasing sludge age resulting in low reactor TCP concentrations, and therefore, high TCP, COD, and toxicity removals. More than 95% of COD, TCP, and toxicity removal took place in the packed column reactor. Volumetric rates of TCP...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.