Abstract

We selected a hit compound, 2-(4-{2-[(phenylthio)acetyl]-carbonohydrazonoyl}-phenoxy)acetamide (PA), by a molecular docking simulation between 636,565 compounds and caspase-1 protein. We examined the effect of PA on allergic rhinitis (AR) animal model. We assessed the therapeutic effects and the regulatory mechanisms of ovalbumin (OVA)-sensitized mouse model of AR. A molecular docking simulation and a kinetic assay indicated that PA regulates the caspase-1 activation through the interaction with the caspase-1 active site. In the AR animal model, PA significantly reduced the rub scoring increased by OVA. The up-regulated IgE, histamine, interleukin (IL)-1β, and thymic stromal lymphopoietin (TSLP) levels in the serum of OVA-sensitized mice were significantly decreased by the treatment with PA. Protein levels of IL-1β, IL-5, IL-6, IL-13, tumor necrosis factor-α, TSLP, cyclooxygenase-2, macrophage inflammatory protein-2, and intercellular adhesion molecule-1 were also significantly inhibited by the treatment with PA in the nasal mucosa tissues of the OVA-sensitized mice. In the PA-treated mice, the number of eosinophils and mast cells infiltrated by OVA-sensitization were also reduced. In addition, PA reduced the mast cell-derived caspase-1 activity and expression in the nasal mucosa tissues of the OVA-sensitized mice. PA showed the possibility to regulate AR in OVA-induced AR models, suggesting that it has therapeutic potential for the management of AR as a lead compound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call