Abstract

Countries the world over have focused on protecting human health and combatting the COVID-19 outbreak. It has had a destructive effect on human health and daily life. Many people have been infected and have died. It is critical to control and prevent the spread of COVID-19 disease by applying quick alternative diagnostic techniques. Although laboratory tests have been widely applied as diagnostic tools, findings suggest that the application of X-ray and computed tomography images and pretrained deep convolutional neural network (CNN) models can help in the accurate detection of this disease. In this study, we propose a model for COVID-19 diagnosis, applying a deep CNN technique based on raw chest X-ray images of COVID-19 patients, which can be accessed publicly on GitHub. Fifty positive and 50 negative COVID-19 X-ray images for training and 20 positive and 20 negative images for testing phases are included. Because the classification of X-ray images needs a deep architecture to cope with the complicated structure of images, we apply five different architectures of well-known pretrained deep CNN models: VGG16, VGG19, ResNet, DenseNet, and InceptionV3. The pretrained VGG16 model can detect COVID-19 from non-COVID-19 cases with the highest classification performance of 80% accuracy among the other four proposed models, and it can be used as a helpful tool in the department of radiology. In the proposed model, a limited dataset of COVID-19 X-ray images is used that can provide more accurate performance when the number of instances in the dataset increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call