Abstract

ABSTRACT Coleoptile/mesocotyl elongation influence seedling emergence and establishment, is major causes of maize deep-seeding tolerance (DST). Detailed analyses on molecular basis underlying their elongation mediated by brassinosteroid under deep-seeding stress (DSS) could provide meaningful information for key factors controlling their elongation. Here we monitored transcriptome and phytohormones changes specifically in elongating coleoptile/mesocotyl in response to DSS and 24-epibrassinolide (EBR)-signaling. Phenotypically, contrasting maize evolved variant organs to positively respond to DST, longer coleoptile/mesocoty of K12/W64A was a desirable organ for seedling under DSS. Applied-EBR improved maize DST, and their coleoptiles/mesocotyls were further elongated. 15,607/20,491 differentially expressed genes (DEGs) were identified in W64A/K12 coleoptile, KEGG analysis showed plant hormone signal transduction, starch and sucrose metabolism, valine, leucine, and isoleucine degradation were critical processes of coleoptile elongation under DSS and EBR signaling, further highly interconnected network maps including 79/142 DEGs for phytohormones were generated. Consistent with these DEGs expression, interactions, and transport, IAA, GA3, ABA, and Cis-ZT were significantly reduced while EBR, Trans-ZT, JA, and SA were clearly increased in coleoptile under DSS and EBR-signaling. These results enrich our knowledge about the genes and phytohormones regulating coleoptile elongation in maize, and help improve future studies on corresponding genes and develop varieties with DST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.