Abstract

Toll-like receptors (TLRs) are major pattern recognition receptors (PRRs) that recognize multiple pathogen-associated molecular patterns (PAMPs) through the leucine-rich repeat (LRR) domain and mount effective immune responses. Vibrio parahaemolyticus is the main pathogen that causes vibriosis in aquatic animals, yet the mechanisms of its recognition by innate immune system in teleost fish remain unknown. Here, the results reveal that TLR13 in orange-spotted grouper (Epinephelus coioides) (EcTLR13) recognizes a conserved 23S ribosomal RNA (23S rRNA) sequence in V. parahaemolyticus, and the 13-nucleotide motif near the 23S rRNA ribozyme activation site (VP13) acts as a PAMP. After challenge with RNA and 23S rRNA from V. parahaemolyticus and with the synthetic oligoribonucleotide VP13, the expression of EcTLR13 in grouper spleen cells (GS cells) was significantly increased. EcTLR13-knockdowned GS cells were stimulated with the same stimulants as listed above, the expression of IL-6, IL-12, IL-1β and TNFα was significantly reduced. RNA-protein immunoprecipitation revealed that VP13 could directly bind to EcTLR13. The dual-luciferase reporter assay also showed that EcTLR13 enhanced the fluorescence activity of IFNβ rather than that of NF-κB when the cells were challenged with RNA from V. parahaemolyticus or with synthetic VP13. Our study established the mechanism of fish TLR13-mediated recognition of microbial products during V. parahaemolyticus infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.