Abstract
A new approach in the design of (Al)InGaAsSb-GaSb quantum-well separate confinement heterostructure (QW-SCH) diode lasers has led to continuous-wave (CW) room-temperature lasing up to 2.7 μm. This has been achieved by using quasiternary heavily strained InGaSb(As) QW's inside a broad-waveguide SCH laser structure. The QW compositions are chosen in the region outside the miscibility gap and, as a consequence, do not suffer from clustering and composition inhomogeneity normally found with quaternary InGaAsSb compounds of 2.3-2.7-μm spectral range. Very low threshold current density (/spl sim/300 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and high CW output powers (>100 mW) were obtained from devices operating in the 2.3-2.6-μm wavelength range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.