Abstract

Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call