Abstract

Measurement-While-Drilling (MWD) technology for oil and gas, and geothermal directional drilling exploration is pushing into ever higher temperature environments - beyond 200°C. Orientation sensors supporting these high temperature environments need to provide highly accurate elevation and tool face measurements on the order of 0.1°. Honeywell has developed a new digital high temperature down-hole accelerometer, DHTA230, capable of providing the required accuracy at the elevated temperatures of 230°C, in the rugged MWD shock and vibration environment, with expected excellent reliability and life. The DHTA230 is designed for use in the downhole environment, but is based upon a mature Honeywell accelerometer using dual vibrating beam sensing elements. These sensing elements are configured as double-ended-tuning-forks in a push-pull orientation attached onto a pendulous proof mass. This push-pull configuration provides an acceleration signal proportional to the frequency difference of the vibrating beams, an easily captured digital signal through measurement of the two vibrating beam phases. The digitized accelerometer eliminates the need for A/D electronics in the high temperature drilling environment. The DHTA230 is 0.79” in diameter with a depth of .393” at the mount flange. The ruggedized configuration of the DHTA230 is expected to provide reliable orientation measurement in high temperature direction drilling applications up to 1000h. The DHTA230 electronics incorporate ceramic hybrids with chip and wire construction. Active die are based upon proven 300°C chips developed previously for the Enhanced Geothermal Systems OM300, fabricated using Honeywell HTSOI4 process. The electronics include power conditioning providing reliable operation using a single power supply between 7V and 15V. Dual oscillator electronic circuits provide the necessary function to drive and sense the dual vibrating beams, while providing a CMOS logic level signal of the frequency pulse train. The accelerometer provides precision output up to 15g acceleration inputs, and allows sensing of higher-g vibration levels. This paper contains information on the target application, electrical and mechanical component requirements, design, fabrication approach, and initial prototype testing. The DHTA230 is expected to enter production transition in 2015.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call