Abstract

Bone homeostasis is maintained by a combination of osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Excessive osteoclast activity is linked to several bone-related disorders, including osteoporosis and rheumatoid arthritis. Pharmacological therapy might have a number of adverse effects. Therefore, the development of natural anti-osteoclastogenic drugs with greater efficacy and fewer adverse effects is desirable. In this study, the anti-osteoclastogenic effects of 23-hydroxyursolic acid (HUA), a triterpene isolated from Viburnum lutescens, were investigated in vitro and in vivo. HUA significantly inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced mature osteoclast differentiation by reducing the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and F–actin ring formation. It also inhibited the expression of osteoclast-specific marker genes such OSCAR, MMP-9, TRAP, DC-STAMP, and CtsK, as well as transcription factors, c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) in response to RANKL. Mice orally administered with HUA (25 and 50 mg/kg) exhibited significant protection against bone loss and osteoclast formation induced by lipopolysaccharide (LPS). HUA suppressed RANKL-induced nuclear factor kappa B (NF-κB) activation and phosphorylation of JNK and ERK mitogen-activated protein kinases (MAPKs). These results suggest that HUA attenuates osteoclast formation in vitro and in vivo by suppressing the RANKL-mediated AP1, NF-κB, and NFATc1 pathways. Therefore, HUA may be a lead compound for the prevention or treatment of osteolytic bone disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call