Abstract

A 2-terminal, dual-junction, epitaxially integrated, GaAsP/Si tandem solar cell with an 3rd party certified efficiency of 23.4 % was fabricated via MOCVD growth on an ex-situ produced Si sub cell. The drastic efficiency improvement over the authors previous peer-reviewed demonstration of such a device architecture is examined. Critical advancements in top cell design to maximize short wavelength response were critical in enabling improved top cell response. An in-depth analysis of this champion tandem cell has identified key loss mechanisms which elucidate the pathway for further efficiency gains. First, voltage dependent collection efficiency in the GaAsP top cell is the primary cause of fill factor losses currently limiting efficiency. Analysis of spectrally resolved I–V measurements and analytical device modeling and indicate poor diffusion length due to elevated dislocation densities as the likely cause for the voltage dependent collection efficiency. Second, modeling for the GaAs0.75P0.25 top cell, using experimental data at multiple dislocation densities, provides quantitative understanding of the current and voltage losses associated with threading dislocations providing a clear efficiency pathway with reduction in dislocation density. Lastly Si subcell modeling identifies the pathway for further Si subcell advances over the present, simplistic design, which has yet to employ the known benefits of rear surface texture or dielectric passivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call