Abstract

Synthetic breakthroughs diversify the molecules and polymers available to chemists. We now report the first successful synthesis of a series of optically-pure 2,2'-tethered binaphthyl-embedded helical ladder polymers based on quantitative and chemoselective ladderization by the modified alkyne benzannulations using the 4-alkoxy-2,6-dimethylphenylethynyl group as the alkyne source, inaccessible by the conventional approach lacking the 2,6-dimethyl substituents. Due to the defect-free helix formation, the circular dichroism signal increased by more than 6 times the previously reported value. The resulting helical secondary structure can be fine-tuned by controlling the binaphthyl dihedral angle in the repeating unit with variations in the 2,2'-alkylenedioxy tethering groups by one carbon atom at a time. The optimization of the helical ladder structures led to a strong circularly polarized luminescence with a high fluorescence quantum yield (28 %) and luminescence dissymmetry factor (2.6×10-3 ).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call