Abstract

Abstract The precise astrometric measurements of the Gaia Data Release 2 have opened the door to detailed tests of the predictions of white dwarf cooling models. Significant discrepancies between theory and observations have been identified, the most striking affecting ultramassive white dwarfs. Cheng et al. found that a small fraction of white dwarfs on the so-called Q branch must experience an extra cooling delay of ∼8 Gyr not predicted by current models. 22Ne phase separation in a crystallizing C/O white dwarf can lead to a distillation process that efficiently transports 22Ne toward its center, thereby releasing a considerable amount of gravitational energy. Using state-of-the-art Monte Carlo simulations, we show that this mechanism can largely resolve the ultramassive cooling anomaly if the delayed population consists of white dwarfs with moderately above-average 22Ne abundances. We also argue that 22Ne phase separation can account for the smaller cooling delay currently missing for models of white dwarfs with more standard compositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.