Abstract

Far-UV light sources have attracted much attention for human-safe viral inactivation and bacterial disinfection. Due to large optical nonlinearity and transparency to this wavelength region, AlN is a promising material for compact and low-cost far-UV second harmonic generation (SHG) devices. In this study, a transverse quasi-phase-matched AlN channel waveguide with vertical polarity inversion was designed and fabricated. From wavelength spectra and a pump power dependence of an SH intensity, far-UV SHG via the largest nonlinear optical tensor component d 33 was successfully confirmed under ultrashort pulse laser excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.