Abstract

The inherent radioactivity of radon gas presents potential exposure risks to human beings through ingestion and inhalation of its radioisotopes 222Rn (radon) and 220Rn (thoron) from water sources. Recent studies have been conducted to assess radon concentrations in different environmental matrices such as water, air, and soil, due to their detrimental impact on human health. As the main cause of lung cancer in non-smokers and an acknowledged contributor to stomach cancer when ingested, the present study aimed to preliminarily assess radon and thoron levels in the Uranium bearing area of Poli in the Faro division of Cameroon, known for its significant U-deposits. The assessment included measuring 220, 222Rn concentrations in drinking water, emanation, and exhalation, with a specific focus on evaluating the exposure of different age groups within the local population. The radon/thoron levels in water and their related exposure and cancer risk dataindicated no immediate health hazards. However, continuous monitoring and prospective measures are deemed essential due to the area's abundant U-minerals. The emanation measurements showed sparsely distributed data with a singularity at Salaki, where the equipment recorded values of 8.14 × 1012 Bqm-3 and 3.27 × 1012 Bqm-3 for radon and thoron, respectively. Moreover, radon/thoron transfer coefficients from thesoil to theair indicated levels below unity. While the calculated doses suggest minimum potential risk in line with WHO and UNSCEAR guidelines, the obtained results are expected to significantly contribute to the establishment of national standards for radon levels in drinking water, emanation, and exhalation. Furthermore, these findings can play a crucial role in monitoring radon/thoron levels to ensure public health safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.