Abstract
In rural areas, low-technology radon reduction methods are essential for safe access to clean groundwater. This study monitored the radon reduction rates in small-scale groundwater-based water supply systems in the Republic of Korea and also presented a mass balance equation using physical environmental conditions from three radon reduction methods. The mass balance results showed that the radon reduction rate would be affected by the groundwater flow rate (m3/day), capacity of the drainage facility (m3), surface area of air-water interface (m2), air-water ratio (dimensionless), and ventilation system. The radon reduction order was as follows: simultaneously powered and non-powered aeration method (free-fall (60.0 %) > aeration (19.6 %) > decay (0.9 %) > diffusion (0.2 %)), low-technology non-powered aeration (free-fall (60.0 %) > decay (3.4 %) > diffusion (0.9 %)), and only storage (free-fall (35.5 %) > decay (4.4 %) > diffusion (1.1 %)). Overall, non-powered aeration using the maximum free-fall effect has the potential for use as a low-technology reduction method and natural decay during water storage is the most important factor underlying seasonal variations in the reduction effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.