Abstract

The communicative role of ultrasonic vocalizations (USVs) in rats is well established, with distinct USVs indicative of different affective states. USVs in the 22 kHz range are typically emitted by adult rats when in anxiety- or fear-provoking situations (e.g. predator odor, social defeat), while 55 kHz range USVs are typically emitted in appetitive situations (e.g., play, anticipation of reward). Previous work indicates that USVs (real-time and playback) can effectively communicate these affective states and influence changes in behavior and neural activity of the receiver. Changes in cFos activation following 22 kHz USVs have been seen in cortical and limbic regions involved in anxiety, including the basolateral amygdala (BLA). However, it is unclear how USV playback influences cFos activity within the bed nucleus of the stria terminalis (BNST), a region also thought to be critical in processing anxiety-related information, and the nucleus accumbens, a region associated with reward. The present work sought to characterize distinct behavioral, physiological, and neural responses in rats presented with aversive (22 kHz) compared to appetitive (55 kHz) USVs or silence. Our findings show that rats exposed to 22 kHz USVs: 1) engage in anxiety-like behaviors in the elevated zero maze, and 2) show distinct patterns of cFos activation within the BLA and BNST that contrast those seen in 55 kHz playback and silence. Specifically, 22 kHz USVs increased cFos density in the anterodorsal nuclei, while 55 kHz playback increased cFos in the oval nucleus of the BNST, without significant changes within the nucleus accumbens. These results provide important groundwork for leveraging ethologically-relevant stimuli in the rat to improve our understanding of anxiety-related responses in both typical and pathological populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.