Abstract
We study the problem of gravity surface waves for an ideal fluid model in the (2+1)-dimensional case. We apply a systematic procedure to derive the Boussinesq equations for a given relation between the orders of four expansion parameters, the amplitude parameter α, the long-wavelength parameter β, the transverse wavelength parameter γ, and the bottom variation parameter δ. Such an approach, known in (1+1)-dimensional theory, is extended for the first time for (2+1)-dimensional shallow water waves. Using this procedure, we derived the only possible (2+1)-dimensional extensions of the Korteweg–de Vries equation, the fifth-order KdV equation and the Gardner equation in three cases of the relationship between these parameters. All these equations are non-local. When the bottom is flat, the (2+1)-dimensional KdV equation can be transformed to the Kadomtsev–Petviashvili equation in a fixed reference frame and next to the classical KP equation in a moving frame. Thus, the Kadomtsev–Petviashvili equation gained a derivation from the fundamental laws of hydrodynamics. We have found soliton, cnoidal, and superposition solutions (essentially one-dimensional) to the (2+1)-dimensional Korteweg–de Vries equation and the Kadomtsev–Petviashvili equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.