Abstract

Dermal fibroblasts are in apposition to type VII (anchoring fibril) collagen in both unwounded and wounded skin. The NC1 domain of type VII collagen contains multiple submodules with homology to known adhesive molecules, including fibronectin type III-like repeats and a potential RGD cell attachment site. We previously reported the structure and matrix binding properties of authentic and recombinant NC1. In this study, we examined the interaction between dermal fibroblasts and the NC1 domain of type VII collagen. We found that both recombinant and authentic NC1 vigorously promoted human fibroblast attachment. Adhesion of fibroblasts to NC1 was dose dependent, saturable, and abolished by both polyclonal and monoclonal antibodies to NC1. Cell adhesion to NC1 was divalent cation dependent and specifically inhibited by a monoclonal antibody directed against the α2 or β1 integrin subunits, but not by the presence of RGD peptides. Furthermore, the cell-binding activity of NC1 was not conformation dependent, since heat-denatured NC1 still promoted cell adhesion. Using a series of recombinant NC1 deletion mutant proteins, the cell binding site of NC1 was mapped to a 158-aa (residues 202–360) subdomain. We conclude that human dermal fibroblasts interact with the NC1 domain of type VII collagen and this cell–matrix interaction is mediated by the α2β1 integrin and is RGD independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.