Abstract

Background: In adults PET scanning of CNS tumors with the tracer FDG (18F-flourodeoxyglucose) can provide information about the degree of malignancy, tumor extent, and dissemination. FDG PET can also be able to assess tumor response to therapy and to differentiate recurrence from necrosis. Although CNS tumors are the most common solid tumor in childhood, so far only few PET-studies have been reported. Pre-operative assessment of malignancy would facilitate surgical planning and the use of pre-operative chemotherapy.Materials and Methods: 21 children with CNS tumors were referred to clinical FDG PET prior to therapy (M/F = 12/9, median age: 9 (range 0-16)), (4 PNET/medulloblastomas; 1 gr. III ependymoma, 16 benign tumors)). Image processing included co-registration with MRI and image fusion. The FDG uptake in the tumors was ranked 0-5 by a hotspot/cortex-ratio by two observers independently. The FDG uptake in grey and white matter was used as reference for the grading system with FDG uptakes defined as 4 and 2 respectively.Results: 15 of 16 patients with tumors WHO gr. I-II had FDG-uptake of 1-2, and all 5 patients with tumors WHO gr. III-IV had FDG-uptake of 3-4. A WHO gr. I papilloma, known to have a high metabolism caused by high mitochondrial activity, had FDG uptake of 5. Except for this tumor, the FDG uptake was positively correlated with tumor malignancy. MRI/PET co-registration and image fusion increased the specificity of tumor location, as well as of tumor extent, and of heterogeneity (e.g., areas of necrosis).Conclusion: FDG PET with MRI/PET co-registration and image fusion could be an important adjunct in the diagnostic work up of pediatric CNS tumors, and could help define patients eligible for pre-operative chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call