Abstract

Within the framework of Dyson–Schwinger equations (DSEs), we discuss the equation of state (EOS) and quark number densities of 2+1 flavors, that is to say, [Formula: see text], [Formula: see text], and [Formula: see text] quarks. The chemical equilibrium and electric charge neutrality conditions are used to constrain the chemical potential of different quarks. The EOS in the cases of 2 flavors and 2+1 flavors are discussed, and the quark number densities, the pressure, and energy density per baryon are also studied. The results show that there is a critical chemical potential for each flavor of quark, at which the quark number density turns to nonzero from 0; and furthermore, the system with 2+1 flavors of quarks is more stable than that with 2 flavors in the system. These discussions may provide some useful information to some research fields, such as the studies related to the QCD phase transitions or compact stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.