Abstract

The EDGES low-band experiment has measured an absorption feature in the cosmic microwave background radiation (CMB), corresponding to the 21 cm hyperfine transition of hydrogen at redshift z ≃ 17, before the era of cosmic reionization. The amplitude of this absorption is connected to the ratio of singlet and triplet hyperfine states in the hydrogen gas, which can be parametrized by a spin temperature. The EDGES result suggests that the spin temperature is lower than the expected temperatures of both the CMB and the hydrogen gas. A variety of mechanisms have been proposed in order to explain this signal, for example by lowering the kinetic temperature of the hydrogen gas via dark matter interactions. We introduce an alternative mechanism, by which a sub-GeV dark matter particle with spin-dependent coupling to nucleons or electrons can cause hyperfine transitions and lower the spin temperature directly, with negligible reduction of the kinetic temperature of the hydrogen gas. We consider a model with an asymmetric dark matter fermion and a light pseudo-vector mediator. Significant reduction of the spin temperature by this simple model is excluded, most strongly by coupling constant bounds coming from stellar cooling. Perhaps an alternative dark sector model, subject to different sets of constraints, can lower the spin temperature by the same mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.