Abstract

The 20th International Conference on 'High Magnetic Fields in Semiconductor Physics' (HMF-20) was held on 22–27 July 2012, in Chamonix Mont Blanc, France, as a satellite meeting to the 31st International Conference on the Physics of Semiconductors.HMF-20 followed a series of biennial conferences, initiated by Gottfried Landwehr, in Wurzburg, Germany, in 1972. Primarily focused on 'semiconductors' and 'magnetic fields', the main topics of the conference have evolved with time and are now dominated by current themes related to the physics of low dimensional systems in conjunction with the application of magnetic fields.The list of HMF-20 topics included: quantum Hall effect phenomena, graphene and carbon nanotubes, quantum wells, dots and wires, bulk semiconductors, topological insulators and organic conductors, magneto-transport and magneto-spectroscopy, electron correlations and magnetic field driven phases, spin-dependent phenomena and non-equilibrium effects, as well as novel phenomena and new techniques in high magnetic fields.The HMF-20 conference gathered 200 participants from 23 different countries. It was organized by the Laboratoire National des Champs Magnétiques Intenses, Grenoble, France, and greatly sponsored by the European High Magnetic Field Laboratory under the EC-FP7 framework. The 21st edition of the HMF conference series will take place during the summer of 2014 in Florida, USA.We thank the participants who, through their presentations, convivial discussions, and the papers presented here, contributed to the success of HMF-20 and advancements in the physics related to the applications of high magnetic fields.Clément Faugeras, Milan Orlita, Benjamin Piot and Marek Potemski Laboratoire National des Champs Magnétiques Intenses CNRS/UJF/UPS/INSA, Grenoble France

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.