Abstract

AbstractThe changing geometry and thermal structure of Scott Turnerbreen, a 3.3 km2 glacier located at 78° N in the Svalbard archipelago, is documented. A net mass balance of–0.58 m a–1w.e. is determined for the period 1936–93, by comparing a recent topographic survey with earlier maps. The thermal regime was investigated with multifrequency radar and borehole thermistors. Basal temperatures of–4.1° and –3.3°C were measured, and observed temperature gradients indicate that the entire bed is frozen. This interpretation is confirmed by continuous radar profiling, which demonstrates the absence of high-frequency scattering from temperate ice. However, with the reconstructed 1936 ice- thickness distribution, at least 2 km of the length of the glacier bed would be at the pressure-melting temperature. The 20th century mass-balance history of Scott Turnerbreen is likely to have been influenced by a surge occurring around 1930, which meant that the glacier was already in a state of disequilibrium before the abrupt climate perturbation marking the termination of the Little Ice Age. A significant loss of mass has been accompanied by a transition from inferred polythermal to entirely non-temperate thermal conditions. Current driving stress and velocity are very low, and the glacier has almost certainly fallen out of the surge cycle. Within 60 years, there has therefore been a wholesale transformation in the geometry, thermal structure and dynamics of Scott Turnerbreen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.