Abstract

With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.Graphical abstract

Highlights

  • Malaria is spread when Plasmodium parasites are transmitted between humans via hematophagous female anopheline mosquitoes

  • The second resistance mechanism, identified in P. xylostella, involves the microRNA miR-189942, which decreases the expression of the ecdysone receptor protein (EcR)-B isoform, thereby reducing the susceptibility to fufenozide [143]

  • We have summarized the importance of 20E throughout the mosquito life-cycle and consolidated some of the experimental evidence that supports the use of 20E agonists as part of an integrated approach to malaria vector control

Read more

Summary

Introduction

Malaria is spread when Plasmodium parasites are transmitted between humans via hematophagous female anopheline mosquitoes. Studies in An. gambiae suggest that chemicals which target the 20E signaling pathway have the potential to control malaria vectors, both at the adult [23,24,25] and immature stages [26, 27]. This is because the 20E pathway regulates several key physiological processes in mosquitoes, such as blood-feeding, insecticide resistance, pathogen development, molting, mating, fecundity and fertility (Table 1).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.