Abstract

Methods A large kindred who exhibit a mixed phenotype of HCM, dilated cardiomypopathy (DCM) and sudden cardiac death segregating in an autosomal dominant inheritance were evaluated. Six individuals from 2 generations the proband, her husband, and their 4 offspring, one son and three daughters, ages 20, 25, 23 and 18 years of age, respectively were followed. The proband had a known history of DCM; offspring had normal cardiac morphology by baseline CMR examination with delayed post-gadolinium enhancement (DME). This cohort was followed with yearly cardiac imaging to detect initial phenotypic expression. Direct DNA sequencing of the coding regions and splice sites of the MYH7, MYBPC3, TNNT2, TNNI3, and TPM1 genes was performed on all 6 members of this nuclear family. Results Genotyping in this selected family revealed a novel heterozygous 2105T>A (I702N) missense mutation in exon 19 of the MYH7 gene in the proband, the son and one daughter. Three unaffected family members tested negative for the mutation. The phenotype in the proband and her 18 year-old daughter progressed to exhibit DCM with evidence of early fibrotic changes by DME. The son progressed to asymmetrical septal hypertrophy, not initially apparent by echocardiography, consistent with early stage HCM. The 3 other members of the family had normal CMR examinations. Figure 1.

Highlights

  • Hypertrophic cardiomyopathy (HCM) resulting from mutations in genes encoding sarcomeric proteins is the most common genetic cardiovascular disease

  • A large kindred who exhibit a mixed phenotype of HCM, dilated cardiomypopathy (DCM) and sudden cardiac death segregating in an autosomal dominant inheritance were evaluated

  • The proband had a known history of DCM; offspring had normal cardiac morphology by baseline cardiac magnetic resonance (CMR) examination with delayed post-gadolinium enhancement (DME)

Read more

Summary

Objectives

The aim of this study was to investigate whether cardiac magnetic resonance (CMR) can identify the phenotypic variability in family members sharing an identical single genetic mutation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.