Abstract
The 2017 WSGC Elijah High-Altitude Balloon Payload Fellowship focused on three different topics for high altitude research: Modular Payload Design, Balloon Dynamics, and Energy Harvesting. A modular payload system was created using advanced manufacturing methods, which improved assembly and field operation. Minor structural fracturing was observed upon recovery. All instrumentation recovered were functioning. Vertical flight dynamics of a high-altitude balloon were studied to create a model that was compared against experimental data. Predictions did not accurately replicate GPS altitude data, possibly due to incorrect internal-balloon pressure readings and underlying assumptions. Habitability of high-altitude environments were explored by monitoring insect analog in pressurized environment. A slow pressure leak induced insects into a comatose state. Radiation was detected visually with camera.Investigated energy generation from balloon kinematics. Flight data not obtained but flight simulation data produced average voltage = 0.0039 V and total energy = 245.13 J.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.